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A B S T R A C T

Wavelet methodology is used to estimate scale betas for eleven industry/sectors for the period 1986-2016. A
comparison of scale betas with standard regression estimates of betas finds no significant differences for any of
the sectors at high frequency/low scales. However, for most of the sectors there are significant differences at
medium and high scales. A rolling 60 month window shows that scale betas may differ from standard betas
substantially for several years. Implications for portfolio managers, especially those employing beta rotation
strategies, are provided.

1. Introduction

The market exposure of an investment is a well-recognized source
of risk that portfolio managers must take into account. The Capital
Asset Pricing Model (CAPM) developed by Sharpe (1964), Linter
(1965), and Mossin (1966) continued the path breaking research of
Markowitz (1952) on the risk reducing effects of portfolio diversifica-
tion by introducing beta, a measure of systematic risk that captures the
non-diversifiable risk of an investment. The degree that market
exposure captured by beta does the job of assessing risk well has been
subject to a great deal of research. Whether or not a consensus
regarding the best approach to defining and estimating market risk is
reached, for portfolio managers beta is a fact of life. For this reason, we
view the widespread use of beta as a measure of an investment's
systematic or non-diversifiable risk by investment managers similar to
that of a decision-making heuristic.1 In this case, a short-cut method

for understanding and comparing market risk across investments. As
Bollerslev et al. (2016) comments, “Even though numerous studies
over the past half-century have called into question the ability of the
capital asset pricing model(CAPM) to fully explain the cross-section of
expected stock returns, the beta of an asset arguably remains the most
commonly used systematic risk measure in financial practice.”2

Another fact of life for portfolio managers is the existence of invest-
ments in sectors done relatively cheaply through ETFs or mutual
funds.3,4 Khorana and Nelling (1997) find that the most important
factor explaining variation in sector-fund returns is the return on the
market index.

The presence of both short and long-term market participants is
another fact of life for the investing world. Reconciling this fact with
estimates of beta is not something that at least on the intuitive level one
would think that standard CAPM regression-based estimates of beta
does well. This is because the standard market beta is based on
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assumptions that place restrictions on time horizons and frequency
changes.5

Wavelet methods have gained widespread acceptance as an efficient
means of investigating multi-horizon properties of time series.
Wavelets provide a unified framework for investigating the relationship
among variables across frequencies and over time.6 Recent research
that offers empirical support for time-scale differences among investors
in equity and commodity markets is found in Vacha and Barunik
(2012), Aloni et al.(2013), Bekiros and Marcillino (2013), Graham
et al. (2013), and Bekiros et al. (2016). Rua and Nunes (2012) use
wavelet methodology and provide evidence that market risk varies
across time and over frequencies.7 Huang and Hueng(2008) estimate a
time-varying beta model applied to the ten S & P 500 sectors, but do
not consider time-varying behavior at different frequencies.8 Our paper
differs from previous research in that we investigate the market risk of
sectors through the use of a well-accepted methodology for dealing
with time-scale differences.

In this paper, we estimate betas for eleven market sectors using
wavelet analysis and compare wavelet betas with standard regression-
based betas. One result is that for all eleven sectors, low scale betas (2-4
months) are not significantly different from standard betas. However,
when it comes to medium and high scale betas (we use six scales that
range from 2-128 months, where the highest frequency or lowest scale
is 2-4 months) we find a different story in that all but one of the sectors
has at least one scale beta significantly different from the standard. As
our analysis illustrates the differences that are found to be significant at
medium and high scales vary depending on the sector and scale. The
one sector without any significant differences between scale and
standard beta is a high beta sector, Business Equipment. In our
analysis whether or not there are significant differences between
standard regression estimates of beta and scale betas appears consis-
tent with the story told by the wavelet coherence plot (wavelet
coherence is a measure like correlation, but localized in time-scale
space and not limited to linear dependencies). In the case of Business
Equipment, as our coherence plot illustrates there are no breaks in
coherence even over medium and high scales.

Although there are a number of reasons to estimate beta coefficients
for sectors with a methodology that captures multi-period investment
horizons, we find that at low scales it does not matter, while for most
sectors at medium and high scales it does. For portfolio managers our
results can be used to turn the beta dial in a direction that helps
improve its use. For example, portfolio managers who use beta rotation
strategies that rely on low beta sectors as protection against market
downturns should use scale betas that reflect horizon effects. As our
rolling window estimates of scale betas at medium scales illustrate for
widely recognized low beta sectors such as utilities and health, time-
scale considerations have significant effects on beta estimates.9 We also
find sectors such as Telecom that switch from a low beta category using
the standard beta estimate to a high beta category based on scale betas
estimated at higher scales, and a sector, Manuf, that switches from a
high to low beta category.

While it is not controversial to assert that supply and demand

shocks impact sectors at different times or horizons, this fact is not
sufficient for generating low scale betas that are significantly different
from standard estimates. We are applying wavelet methodology, a
methodology that captures horizon effects applied to a context where
there exist factors driving sector returns that work over multiple
horizons, but do not find significant differences between scale and
wavelet betas at low scales. Wavelet methodology captures unique
information at each horizon, and we surmise that high frequency
changes are not contributing to market risk at the sector level perhaps
because high frequency changes represent short-lived shocks that are
more likely to reflect diversifiable risk that is not captured in estimates
of beta coefficients. This is not the case at high and medium scales. The
medium and high scale dynamics play out differently in that for ten of
the eleven sectors there is at least one and as many as four scale
dependent betas that are significantly different from the standard
estimates. We argue that there are changes in the market environment
occurring at medium and high scales that differ in important ways from
changes at low scales. However, the time and frequency changes
occurring at medium and low scales are not all created equal. Some
changes do lead to scale dependent betas that are significantly different
from standard estimates, but not every scale beta at medium or high
scales is significantly different. We relate this to whether there are
coherence differences across medium and high frequencies.

Differences in estimates of scale betas and standard betas across
sectors are also compatible with Siegel (2005) where he argues that the
diffusion of market moving information within sectors and across
sectors is uneven. His explanation is compatible with our results since
such unevenness may be captured by changes in coherence across
frequency that wavelet analysis uncovers. Put differently, since wavelet
analysis captures changes in the frequency domain over time we are
able to identify periods or scales when estimates of the systematic risk
of sectors are significantly changed relative to standard estimates of
beta. Wavelet measures of market betas for the sectors provide
significantly different measures of market betas estimated from the
standard one-factor market model when the frequency resolution of
low frequencies and the time resolution of high frequencies are
important features of the underlying risk dynamics. We find this occurs
when there are large differences in coherence across frequencies. Our
finding that the standard market beta of the business equipment sector
for the period examined (1986-2016) is not significantly different from
scale betas even at medium and high scales is explained by its high, but
stable coherence over the period examined.

This paper employs a data set that includes the following periods of
high market volatility: 1) Asian Crisis of 97-98, 2) tech bubble burst of
2000, 3) financial crisis of 2008-2009, and 4) the European debt crisis
(2010-2011).10 Our analysis of the data also highlights through results
from a Multiresolution Analysis that periods of market turmoil are
associated with high market volatility at low scales, but only the
financial crisis of 2008-2009, followed by the European Debt Crisis is
associated with periods of high market volatility at high scales. The
presence of high market volatity at high scales we refer to as a ”market
turn,” while a ”market shrug” refers to high market volatility at low
scales. An examination of the wavelet power spectrum for the market
and each sector illustrates that the pattern of variation among sector
returns even during periods of market turmoil, appears differently at
different time horizons and frequency intervals. Some of these periods
are market shrugs affecting few sectors, while market turns are felt
across many sectors over many different scales.

The remainder of the paper is organized as follows: Section 2
highlights research based on wavelet analysis in applied financial
economics of particular relevance for our analysis. The important
concepts used in wavelet analysis that are applied in our analysis are

5 A voluminous literature devoted to empirical tests of the CAPM evolved. Much of the
empirical work on the CAPM employs a beta that remains constant over time or over the
estimation period. One fix for this is found in time-series variation in the conditional
betas of equity portfolios as shown in research by Bollerslev et al. (1988). Recent research
by Bali (2008) have expanded the seminal inter-temporal capital asset pricing model
(ICAPM) found in Merton (1973) using novel econometric techniques.

6 Wavelet methodology has been employed across research fields, with growing
applications in economics and finance, see Conlon and Cotter (2011). Research on
wavelet methodology of particular relevance for our paper is discussed in the next
section.

7 Their application is to Emerging Markets.
8 Their focus is on the asymmetric risk-return relationship and they do not employ

wavelet analysis.
9 See ?Business Cycle Approach to Equity Investing? by Fidelity Investments(2014).

10 These periods of high volatility have been identified as periods of crisis in such
research as Bekiros et al. (2016).
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introduced in Section 3. The data and empirical results are discussed in
Section 4. The conclusions follow in Section 5.

2. Literature review

The role of beta as a measure of market risk is given center stage in
the CAPM developed by Sharpe (1964), Linter (1965) and Mossin
(1966). The long history of empirical studies that followed their
seminal work is summarized in Fama and Kenneth (2004). One
important issue emerging from empirical testing of the CAPM is the
stability of beta over time. Attempts to improve estimates of beta
resulted in the removal of the restriction that beta remain constant over
the estimation period. An important early study that allowed for time-
series variation in the conditional betas of equity portfolios is Bollerslev
et al. (1988). Subsequent research by Harvey (1989); Jagannathan and
Wang (1996); Lewellen and Nagel (2006); Bali (2008); Bali and Robert
(2010), and Bali and Robert (2012) found significant time-series
variation in conditional beta. Recent research by Bali et al. (2016)
allows for time-varying sensitivity of an asset to the market portfolio
and to shifts in future investment opportunities. Another path for
research that is not beholden to a constant beta assumption employs
the wavelet methodology. This approach allows beta to vary over
frequency and time. In doing so it allows one to examine the effects
of heterogeneity in investment horizons. Wavelets models are not
constrained to two scales, the “short term” and “long term”. Gencay
et al. (2003) first proposed the use of wavelets to estimate systematic
risk in the Capital Asset Pricing Model. They estimate the beta of each
stock annually for 6 wavelet scales using daily returns for the period
January 1973 to November 2000 for stocks that were in the S & P
500.11 They find a positive relationship between portfolio returns and
beta. Gencay et al. (2005) extend their 2003 study by including stocks
from the Germany, and UK. They find that scale matters in other
markets in that the relationship between portfolio returns and beta
becomes stronger at high scales. Fernandez (2005) applies wavelet
analysis to a model of the international CAPM using a data set that
consists of daily aggregate equity returns for seven emerging markets
for the period 1990-2004.12 The ICAPM13 was estimated at 6 scales (2-
128 day dynamics). Fernandez finds that market sensitivities are
generally greatest at the higher scales of 5 and 6. In addition, the R2

peaked at scales 5 and 6. She concludes that the ICAPM does its best at
capturing the relationship between risk and return at the medium scale
or long term scale that for their data set is 32-128 days. An important
takeaway from research employing wavelet measures of beta is that
when the environment is distinguished by slowly changing features, or
low frequency events the CAPM's applicability in terms of providing a
measure of systematic risk improves when using wavelets. This is
consistent with the findings of Rua and Nunes (2012) that employs
wavelet methodology and provides evidence that market risk varies
across time and over frequencies.14

Another path of research relevant to our study of the market risk of
sectors is research that examines the co-movement of returns using
wavelet analysis. Rua and Nunes (2009) examine the international co-
movement of returns using wavelet analysis. They use the continuous
wavelet transform to study the coherence of monthly returns from
January 1973 to December 2007 for the US, Germany, Japan and the
United Kingdom at the aggregate level and by industry sector. One of
the main findings of their analysis is that the strength of the co-
movement of returns across countries depends on the frequency
domain. Specifically, they find that the co-movement is stronger at

lower frequencies. Barunik et al. (2011) examine the co-movement of
Central European stock markets using wavelet coherence on high
frequency data. Their data set consists of TICK data of stock indices
for Germany, Czech, Poland and Hungary from January 2, 2008
through November 30, 2009 sampled in five-minute intervals. They
also examine co-movement among the indices at the daily level and
include the U.S. and the U.K. in their analysis. For both data sets they
find that co-movement of stock markets changes significantly in time
and varies across scale.15 Recent research that offers empirical support
that time-scale differences among investors matters in both equity and
commodity markets is found in Vacha and Barunik (2012), Aloni
et al(2013), Bekiros and Marcellino (2013); Graham et al. (2013), and
Bekiros and Nguyen (2016). A wavelet approach for estimating market
risk has distinct advantages for capturing changes in the frequency
domain over time. However, the literature reveals a gap. Wavelet
estimates of beta did not consider sectors. Sectors are of particular
importance since many active investors employ portfolio tilting tech-
niques which utilize sectors portfolios throughout the course of a
business cycle. Huang and James Hueng (2008) estimate a time-
varying beta model applied to the S & P 500 sectors, their estimates do
not consider time-varying behavior at different frequencies. Our
research is the first to offer estimates of scale betas based on sectors.
The research literature points to the importance of capturing differ-
ences in investor horizons16, and changes in the frequency domain in
estimates of market risk, as well as, for measuring return co-move-
ments. Our application of wavelet methodology to the market risk of
sectors suggests that when it comes to capturing the market risk of
sector investing a nuanced perspective is needed in that no simple
patterns emerge.

3. Wavelet analysis

The main feature of wavelet analysis that has broadened its
applicability in finance is its capability to decompose a time series into
low and high frequency components that correspond to short, medium
and long term variation in the series. Both time and frequency
components of a series are captured through wavelets that represent
a set of basis functions that are classified into father and mother
wavelets. The father wavelet captures smooth and low frequency
components, while the mother wavelets capture the short-term dy-
namics or high frequency parts.17 In contrast to Fourier methods where
the basic Fourier transform frequency decomposition is global, the
wavelet transform allows for localized decomposition in both frequency
and time. This is particularly suitable for an analysis where there are
investors with different time horizons.18

The transformation is not in terms of trigonometric polynomials,
but in terms of wavelets.19 The wavelet transform is composed of a
father wavelet and a set of mother wavelets. Given a function Φ, the
father wavelet for the discrete transform is defined as:

Φ Φ2J k
t k

,
− − 2 *

2

J J

J2 (2)

∫ Φ t dt( ) = 1

The mother wavelets, also in discrete form, are defined as:

11 The calculation of scales is described in Section 3.
12 Brazil, Chile, Mexico, Indonesia, South Korea, Malaysia, and Thailand.
13 ICAPM for 2 countries E r r β cov r r β cov r s( − ) = ( , ) + ( , )i i w i1 2 , where ri=returns for

domestic asset, rw=returns for world portfolio, s is the percent change in the exchange
rate for domestic and foreign currency.

14 Their application is to Emerging Markets.

15 Applications of wavelet methodology in finance and economics are growing rapidly.
See for example, Conlon and Cotter (2011), Fernandez and Ratios (2007); Kriechbaumer
et al. (2014); Wang and Wu (2012).

16 Earlier studies include Levhari and Levy (1977) and Handa et al. (1989), see also
Jagannathan and Wang (2007)

17 See Cowley (2005) for an introduction to wavelet methods in economics and
finance, and Gencay, et. al. An Introduction to Wavelets and Other Filtering Methods in
Finance and Economics.

18 For the relevance of horizon effects see for example Kamara et al. (2015).
19 See Strong (1993) for a comparison of wavelet versus Fourier transforms.

B.D. McNevin, J. Nix Economic Modelling 68 (2018) 570–585

572



Ψ Ψ j J, 2 , = 1,…,j k
t k− − 2 *

2

j j

j2 (3)

∫ Ψ t dt( ) = 0

Where J is the number of scales or levels, 2J is a scale factor and k is
the time domain index.

The father and mother wavelets are each indexed by both scale and
time. It is precisely this dual indexing that makes wavelet analysis
appealing since as a time series, f(t), is represented as a linear
combination of wavelet functions that are localized in space and time.

The scale parameter is inversely proportional to frequency.20 The
father and mother wavelet functions may also be represented as filters.
In this alternative representation the father wavelet is a low pass filter,
and the mother wavelets are high pass filters.21 We can use the wavelet
functions to transform a time series, f(t), into a series of wavelet
coefficients,

∫S f t Φ, = ( ) ,J k J k (4)

and,

∫d f t Ψ j J, = ( ) , = 1,…,j k j k (5)

Where S ,J k are the coefficients for the father wavelet at the maximal
scale, 2J, and the d ,j k , are the coefficients of the mother wavelets at the
scales from 1 to 2J. The d ,j k are referred to as the detailed coefficients
and the s ,J k are referred to as the smooth coefficients. Applying the
transforms results in a time series of length k of smooth coefficients at
the maximal scale J, and J time series of detailed coefficients each of
length k. If there are 6 scales, the frequency of the first scale is
associated with the interval [1/4,1/2], and the frequency of scale 6 is
associated with the interval [1/128, 1/64]. The time series used in this
a paper is monthly. We decompose the series into six scales (D1-D6)
that correspond to 2-4, 4-8, 8-16, 16-32, 32-64, and 64-128 months.
The smooth component (S6) captures the trend of the original series.
The high frequency component is associated with the shortest scale D1,
while the low frequency component is associated with the longest scale
D6. The use of six scales is found in much research the employs wavelet
methodology in economics and finance. For example, see Gencay et al
(2002), Rua and Nunes (2009), and Bekiros(2015). Six scales are
considered to provide a good balance between time and frequency
localization.

Our application of wavelet analysis to sectors employs both a
discrete wavelet transform (DWT) and a multi-resolution decomposi-
tion. Given the smooth and detailed coefficients, a time series f(t) can
be represented in decomposed form, known as the multi-resolution
analysis of f(t), as follows:

f t Σ S Φ t Σ d kΨ t Σ d Ψ t Σ d

Ψ t

( ) = , , ( ) + , , ( )+⋯+ , , ( )+⋯+ ,

, ( )
k J k J k k J J k k j k j k k k

k

1

1 (6)

Or, using summary notation,

f t S D D D( ) = + + +⋯+J J J−1 1

The discrete wavelet transform decomposes a time series into
orthogonal signal components at different scales. Sj is a smooth signal,
and each Dj is a signal of higher detail. The number of coefficients
differs by scale. If the length of the data series is n, and divisible by 2J,
there are n d/2 ,j

j k coefficients at scale j=1,…,J-1. At the coarsest scale
there are n d/2 ,J

J k and s ,J k coefficients. The wavelet variance at each scale
is captured as the wavelet power of each scale. The continuous wavelet
transform (CWT) is also useful for gaining insight into the time-scale
characteristics of a time series. The CWT is defined as,

∫W λ t Ψ u x u du( , ) = , ( ) ( )λ t
−∞

+∞

(7)

where,

Ψ u Ψ, ( ) ≡ ( )λ t λ
u t

λ
1 −

As noted by Ramsey, the main difference between the CWT and
DWT is that the CWT considers continuous variations in the scale λ( )
and time components t( ). The discrete wavelet transform can be
derived independently of the CWT, but it can also be viewed as a
critical sampling of the CWT with λ = 2 j− and t k= 2 j− .

The wavelet power spectrum which measures the local variance of a
time series at different scales is defined as W λ t| ( , ) |2 , and aids our
analysis in terms of understanding how periodic components evolve
over time when applied to the market, as well as, the eleven sectors
examined in our analysis. A clear advantage that the CWT has over the
discrete transform is that it produces a powerful visual for detecting
time-scale patterns. The wavelet power spectrum is helpful for under-
standing how the power varies with the scaling of the wavelet. But we
also need to understand how periodic components evolve jointly over
time. The Fourier coherency identifies frequency bands where two time
series are related, while the wavelet coherency identifies both frequency
bands and time intervals when time series are related. The wavelet
coherence of two series, x and y, is a measure of co-movement across
time and scale based on the CWT. To define it we need the definition of
two other measures, the cross wavelet transform (XWT) and the cross
wavelet power (XWP). The XWT is defined as

W W λ t W λ t= ( , ) *( , )xy x y (8)

The XWP is the defined as the absolute value of the XWT, W λ t| ( , ) |xy . It
measures the local covariance of x and y at different time scales. The
XWP identifies areas in time-scale space where the two series have high
common power. In addition to identifying the common power of two
time series, we are also interested in identifying areas of co-movement
in time-scale space, even if the cross wavelet power is low. A measure of
co-movement, the wavelet coherence, is defined as:

R λ t( , ) = S S Wxy λ t
S S W λ t S S W λ t

2 | ( ( , )) |
( | ( , ) | ) * ( | ( , ) | )x xy

−1 2

−1 2 −1 2 (9)

Where S is a smoothing operator in time and scale, and
R λ t0 ≤ ( , ) ≥ 12 . The wavelet coherence is similar to the correlation

coefficient, and is typically interpreted as a localized correlation in
time-scale space.

4. Data and empirical results

4.1. Cumulative excess returns

The data we use for our analysis are from the Kenneth French Data
Library.22 The market portfolio (MKT) is a composite portfolio of all stocks
traded on the NYSE, AMEX, and NASDAQ. The market is divided into 12
industry groups or sectors defined below. The Other Industry is not
included in our analysis as it is essentially a residual category and is not
relevant from an investment strategy perspective. We use the abbreviation
associated with each sector throughout the paper.

All returns are reported in excess of the risk free rate. The risk-free
rate is measured by the yield on the 1-month T-bill.23

The sample period includes three recessions: 1) July 1990 - March
1991 (8 months), 2) March 2001 - November 2001 (8 months), and the
most recent recession, December 2007 - June 2009 (18 months).24 As

20 See Gencay et al., 2010, pp. 99-103 for a complete discussion.
21 See Ramsey (2002).

22 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
23 The 1 month T-bill rate used as a risk free rate is calculated by Ibbotson and

Associates, and provided by Kenneth French in his Data Library
24 Recession dates are from, US Business Cycle Expansions and Contractions, the

National Bureau of Economic Research. http://www.nber.org/cycles.html
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well as, periods of high market volatility, or market turmoil such as the
Asian crisis of 1997-1998, and the European debt crisis of 2010-2011.
Table 1.

Cumulative excess returns for the series are displayed in Fig. 1, and
reported in Table 2. Cumulative growth for the MKT was 573% from
October 1986 through October 2016. Those sectors with the highest
cumulative excess growth are NoDur (+1274%), Hlth (+1183%), and
Manuf (+946%). Cumulative returns for all three of these sectors were
consistently at the high end of the sector distribution throughout the
sample period. Other fast growing sectors such as Money and BusEq
dropped substantially in a recession and never regained their lead. In
the case of BusEq the drop occurred in the 2001 recession, and for the
Money sector it occurred in the 2008 recession.

Two sectors with the lowest cumulative growth were Durbl (+212%)
and Telcm (+433%). Telecommunications never regained the losses
from the tech bubble burst, and the Durable goods sector was
consistently low throughout the sample period.

4.2. Variability of sector returns

Our analysis of the sectors finds a high degree of variability in
cumulative returns for some series, for example, Energy peaked at
+784% in June 2008, and declined to +340% in Feb. 2009; Business
Equipment peaked at 736% in Mar, 2000, and declined to +131% in
Sept 2001; while Money peaked at +516% in July 2007 and declined to
66% in Feb. 2009. A more detailed set of descriptive statistics for the
monthly excess returns (%) is reported in Table 2. Monthly returns
range from a high of 42.6% for Durable goods (Apr. 2009) to a low of
minus 42.8% also for Durable goods (Oct. 2008). Skewness is negative
for all sectors except Durable goods; the skewness ranges from -0.873
for Manufacturing to +0.086 for Durables. Excess kurtosis is positive
(leptokurtic) for all of the sectors, suggesting that the distribution of
returns has fatter tails than a Normal distribution. It ranges from 0.7
for Utilities to 5.3 for Durables. The Jarque-Bera25 test which tests the
null hypothesis of Normality, rejects the null for all of the indices at the
95% level of confidence. The smallest JB test statistic is for Energy that
has an asymptotic p-value of 0.0002.

Ljung-Box26 statistics for market and sectors returns, and also the
absolute value of returns are reported in Tables 3 and 4. Table 3
indicates that there is little evidence of serial correlation for returns.
One exception is the durable goods sector where the null hypothesis is
rejected at all 4 lag levels. Telecommunications rejects the null
hypothesis at lag levels 6 and 12.

The Q-statistics in Table 4 are generally high enough to reject the
null hypothesis, suggesting that presence of an ARCH effect. Two
noticeable exceptions are Energy and Health. Both sectors fail to reject
the null for the absolute value of returns at all 4 lag levels at the 95 %
level of confidence.

In summary, the descriptive statistics, while typical of equity
returns present a picture that suggests the need for a methodology
that captures the underlying dynamics of a system characterized by
equity returns at the sector level that exhibit non-normality, with a
negative skew and positive excess kurtosis. For sector returns there is
generally little or no serial dependence, but consistent with an ARCH
effect, the absolute value of returns do exhibit serial dependence.

4.3. Multi-resolution analysis

Fig. 2 shows results from a multi-resolution analysis (MRA) of
monthly returns for the market returns for the period from October
1986 through October 2016. The transformation is indexed by time
and scale. The plot on the top left hand side (MKT) is the actual series
of returns, the charts labeled D1-D6 are the wavelet details for
j j= 2 , = 1, ‥, 6J . The smooth or father wavelet is plotted in the chart
labeled S6. The scale for the chart is calculated as 2j, so the period for
the series labeled D1 is 2-4 months, D2 is 4-8 months, etc. As
illustrated in Fig. 2, as j decreases from 6 to 1 the multiple resolution
decomposition produces series of finer detail. Since the multi-resolu-
tion analysis is an additive decomposition, the original series is found
by adding up at various time scales a detailed series up to the highest
considered scale, and adding to this detailed series a smooth series that
captures the long-term trend at the highest scale level, where the
smooth series contains the non-stationary components if they exist.

The time evolution of the volatility components indicates that
periods of high volatility are concentrated around specific times. Our
data set covers the following periods of high market volatility: 1) The
Asian Crisis of 1997-98, 2) tech bubble burst of 2000, 3) financial crisis

Table 1
Kenneth French 12 Industry Data Set.

1 NoDur Consumer NonDurables – Food, Tobacco, Textiles, Apparel, Leather, Toys
2 Durbl Consumer Durables – Cars, TV's, Furniture, Household Appliances
3 Manuf Manufacturing – Machinery, Trucks, Planes, Off Furn, Paper, Com Printing
4 Enrgy Oil, Gas, and Coal Extraction and Products
5 Chems Chemicals and Allied Products
6 BusEq Business Equipment – Computers, Software, and Electronic Equipment
7 Telcm Telephone and Television Transmission
9 Shops Wholesale, Retail, and Some Services (Laundries, Repair Shops)
10 Hlth Healthcare, Medical Equipment, and Drugs
11 Money Finance
12 Other Other – Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment

Fig. 1. These figures show the time series of cumulative excess returns for the Market
Index, and the eleven sector indices based on monthly data from October 1986 through
October 2016.

25 The Jarque-Bera test statistic: JB S K= ( + ( − 3) )n
6

2 1
4

2 where n=sample size,
S=sample skewness and K=sample kurtosis. The JB statistic is distributed Chi-square
with 2 degrees of freedom.

26 The Ljung-Box Q statistic tests the null hypothesis that the data are random,
H ρ ρ ρ j: (1) = (2)=?= ( ) = 00 . Critical values: for 1,6,12,and 24 df are: 3.84, 12.59, 21.03
& 36.42, respectively
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of 2008-2009, and 4) European debt crisis of 2010-2011. These periods
of market turmoil play out differently when viewed in terms of the
detailed coefficients. At lowest scale, or highest frequency, each specific
period of market turmoil is associated with high volatility, but only the
financial crisis of 2008-2009, followed by the European debt crisis is
associated with periods of high market volatility at low frequency or
higher scales. While the series becomes smoother as the scale
increases, we can see that at level 3 it appears as though the variance
is greater after 2007. This same pattern of increasing variance post-
2007 is also seen at levels D4 and D5.

The increasing variance after 2007 suggests that when it comes to
market turmoil there is a market turn, and not a market shrug in that
the downturn associated with 2008-2009 financial crisis was different
in that it is associated with persistent market variability shown at
higher scales. The international dimension of this crisis may help
explain its persistence over scales.

4.4. Market and sector variability based on the wavelet power
spectrum

The use of both scale and time in conceptualizing and under-
standing the variability of sectors and the market is illustrated in Fig. 3
that contains a plot of the power spectrum for monthly returns of the
Market, October 1986-October 2016.

The level of the power is reflected by the color. The color intensity
helps focus attention on how time and frequency are both incorporated
into an understanding of variability. Blue represents the lowest
variance and red the highest. The period, in months, is indicated on
the vertical axis. If we take a given value for wavelet scaling, and read
horizontally we see how the power varies across the time domain for a
given scale. If at a given point in time we read vertically, we see the
power varies with scale. The black contour lines indicate areas where
the variance is statistically different from the variance of a white noise
process.

The cone shaped edges that distinguish vivid colors from shaded
colors is called the cone of influence. The power calculated outside the
cone of influence violates the boundary conditions, and this implies
that the power calculation can be influenced by edge effects, and should
not be considered in the evaluation of power.

This graphic presents a similar story to the MRA as the variance is
highest as shown in red after 2007. It clearly indicates a spike in the
variance at the two-month period that centers around 2009, and also
high variance during the same time frame at the 16-32 month scale.
Although not appearing as a red color, we can see that the variance for
the 32-64 month period from 1998 to 2012 appears to increase. There
are significant spikes in variance at the 1-4 month period between 1998
and 2003, and again in 2008-2009, 2010-2011, reflecting short-run
effects of periods with high market variability (Asian Crisis, Tech
Bubble burst, Financial Crisis, and European debt crisis). When it
comes to power, such periods appear to linger in the market as shown
by the high intensity colors present at both low and high scales.

A striking feature of the analysis based on the wavelet power graph
of returns for each sector is the wide variability of power across the
time-scale space. The downturns in 2001 and 2008 both exhibit high
power at a low period (2 months) for all 11 sectors. If we only
considered the low period finding of high power the tech bubble burst
in 2000 and the ensuing recession appear very similar to the housing
bubble burst in 2008 and the ensuing recession in terms of the
transmission across all eleven sectors in the short-run. However, when
considering the 2008 downturn some sectors continue to exhibit high
power over a broader range of periods (2-32 months). This is most
notable for Energy, Money, and Durbl. The continued variability or
power at higher scales for many sectors in 2010-2012 suggests that the
financial crisis had lingering effects perhaps due to its transmission
across borders. This spread of a recession is not evident in the 2001
recession. We do not find the high power at the higher scales (16-32

Table 2
Summary statistics.

Mkt NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money

Observations 361 361 361 361 361 361 361 361 361 361 361 361
Minimum −0.232 −0.216 −0.327 −0.292 −0.189 −0.252 −0.265 −0.163 −0.127 −0.289 −0.211 −0.225
Median 0.012 0.008 0.007 0.013 0.008 0.011 0.011 0.011 0.010 0.009 0.010 0.012
Mean 0.006 0.008 0.006 0.008 0.007 0.007 0.008 0.006 0.006 0.007 0.008 0.007
Maximum 0.125 0.143 0.426 0.211 0.189 0.144 0.203 0.212 0.112 0.128 0.161 0.170
Stdev 0.044 0.040 0.069 0.054 0.054 0.045 0.070 0.051 0.039 0.049 0.046 0.055
Skewness −0.903 −0.590 0.086 −0.873 −0.114 −0.660 −0.393 −0.365 −0.484 −0.780 −0.342 −0.706
Excess kurtosis 2.8 3.0 5.3 4.1 1.0 3.1 1.4 1.3 0.7 3.6 1.4 2.4
Jarque-Bera 173.4 159.0 436.3 298.6 17.0 177.8 39.2 34.2 21.7 238.4 37.8 117.5
Cum. Ret(%) 573.1 1274.4 212.7 946.4 664.0 824.2 574.1 432.8 506.9 794.9 1182.6 516.8

Table 3
Ljung-Box statistics- returns.

Lag=1 Lag=6 Lag=12 Lag=24

Mkt 3.26 5.04 7.75 12.62
NoDur 1.90 7.11 15.33 30.61
Durbl 5.49 17.91 22.35 41.85
Manuf 2.14 8.96 12.64 19.25
Enrgy 0.01 5.23 11.14 14.53
Chems 0.53 2.89 6.56 13.96
BusEq 0.31 2.92 7.35 19.02
Telcm 1.78 12.60 22.32 30.14
Utils 0.57 3.55 12.35 19.03
Shops 5.19 14.13 17.00 24.80
Hlth 0.21 5.89 12.26 17.10
Money 5.28 13.59 18.35 29.25

Table 4
Ljung-Box statistics- absolute value of returns.

Absolute value of returns

Lag=1 Lag=6 Lag=12 Lag=24

Mkt 10.16 44.25 58.44 91.31
NoDur 1.75 24.11 39.81 59.36
Durbl 4.50 30.13 36.39 58.43
Manuf 7.49 36.66 48.60 67.27
Enrgy 0.93 3.61 19.98 25.15
Chems 3.20 10.21 21.84 33.92
BusEq 33.02 131.74 214.07 349.64
Telcm 10.19 68.48 97.27 141.27
Utils 0.00 18.64 33.05 53.78
Shops 7.53 32.28 41.64 57.61
Hlth 0.22 8.98 14.64 28.50
Money 15.96 77.97 91.04 103.30
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month) across sectors that we find for the 2008 recession. However, the
power spectrum for Telcom and BusEq is elevated over a broad range
of periods during the tech bust (2000-2002).

Measured by power we find that although the short-run effects of the
2001 and 2008 recessions appear similar in terms of higher power for all
eleven sectors, the long-run effects of the 2008 recession are more
broadly based in terms of sectors compared with the 2001 recession.
Two other sectors, Telcom and Utils, have very high power at a period of
32 months from 1998 through 2012. One interpretation is that during
the sample period there were regulatory changes in both sectors and the
high power at higher scales may reflect uncertainty regarding the effects
of regulatory changes on sector performance and therefore, high power
is picking up the effects of policy uncertainty in this sector.27 In
summary, the wavelet power spectra applied to the Market and eleven
sectors clearly suggest the risk of sector investments does not present the
same relationship at all frequencies. Whether the findings of high power
are associated with significant differences in market risk for eleven
sectors requires that we obtain a measure of how periodic components
evolve over time, not just individually as reflected in the power spectrum
for each series, but also jointly. In the next section, we examine the joint
movement between market returns and sector returns by using wavelet
coherence as a critical measure of co-movement. Fig. 4.

4.5. Sector analysis through wavelet coherency

The method of wavelet coherency is applied to the market and
sector portfolios. Plots of the wavelet coherence are presented below
(Fig. 5). In each plot x represents monthly excess returns for the
market, and y represents excess returns for a sector. Arrows pointing to
the right or left indicate that x and y are in or out of phase. An arrow
pointing up (down) indicates that x (Market) leads (lags) y (sector). The
color represents the level of the coherence or co-movement, where blue
is the lowest and red is the highest. The white contours denote areas of
significant (5% level) coherence. The presence of an arrow indicates
that the wavelet coherence is statistically significant at the 95% level of
confidence. The direction of the arrows indicates the phase of x, and y.

A striking feature of all eleven sectors is the low level of coherence
with the market at high frequencies (from 1 to 4 months). This finding
of low coherence with the market is present for less cyclical sectors,
such as Utilites, Nondurables, and Health. These sectors have little or

no coherence over time spans for periods of up to four months. We find
that even for the more cyclical sectors the coherence is spotty for
periods of less than 8 months. The coherence at high frequencies is
surprisingly low, so we cross-check this result using traditional Fourier
Spectral Analysis and find additional support for low coherence at high
frequencies as shown in Fig. 6.

One possible explanation for the low level of coherence at high
frequencies among all eleven sectors and the Market is that changes in
short-term frequency components are short-lived and diversifiable.

The phase relationship found in the time-frequency plots of the
continuous wavelet coherence suggest a complex lead/lag relationship.
At the higher frequencies, the sectors are often in phase with the
Market, but for lower frequencies this is typically not the case. The
lead-lag relationship changes for many sectors across frequencies
making it very difficult, and misleading, to characterize a sector as
leading or lagging the market. However, the phase differences are
telling the same story as the coherence charts in that for all the sectors
with the exception of business equipment coherence differences are
largest at medium and/or high scales.

Overall, the time-frequency plots of the continuous wavelet coher-
ence show the time-varying nature of the relationship between sector
and market returns at different frequencies. Even at high scales (low
frequencies) there are periods where the coherency is large and other
periods where it is small.

The time-frequency plots of continuous wavelet coherence paint a
compelling picture of why capturing time-varying behavior at different
frequencies is important for estimates of a sector's exposure to market
risk. For example, the Utility sector (Utils) is a sector that has very little
coherence with the Market for periods less than 8 months. It is clear
from Fig. 5 that the coherence is high at low frequencies and low at
high frequencies. Using a fixed time window for estimating market risk
exposure may give a misleading picture of systematic risk because if the
window is too short, it results in an underrepresentation of low
frequencies components. If the window is too long (entire sample)
then all frequencies are equally represented. To varying degrees the
situation illustrated by Utils is true for most of the sectors, with the
exception of Business Equipment. Business Equipment is a sector with
large coherence that does not appear frequency dependent or time-
varying. But for the other ten sectors the coherence of sector returns
with the market is time-varying at different frequencies. We will
investigate more formally whether such variation in coherence matters
for estimates of market risk by first finding what we refer to as the
baseline for market risk, standard beta estimates based on regressions
of the market model. We also allow for time-variability through rolling

Fig. 2. Multiresolution analysis of Market returns This figure contains a multi-resolution analysis (MRA) of monthly returns for the total market for the period from October 1986
through October 2016. The series labeled MKT is the returns for the market Index. Series D1 through D6 are the wavelet details and S6 is the father wavelet.

27 For a discussion of regulatory changes affecting the Telecommunications see Noam
(2006).
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window estimates of beta. Given that the strength of wavelet metho-
dology is its ability to capture time-varying behavior at different
frequencies (Fourier analysis only captures changes over frequencies)
we also provide estimates of scale betas. To illustrate the importance of
scale for estimates of beta, we also use a rolling time window to
estimate time-varying betas at different scales.

4.6. The standard market model

We look at the data from the perspective of the standard market
model in order to estimate a benchmark so commonly used, we argue it
operates as a heuristic, and compare our estimates of this beta heuristic
to estimates of wavelet betas.

In the static CAPM model investors care only about the one-period
mean and variance of portfolio returns. We provide an estimation of
the standard market model, where beta is estimated as an OLS
regression coefficient.

r r α β r r− = + ( − )it ft i i mt ft

where i=sector, rf is the risk free rate, and rm is the market return. The
intercept or αi is a measure of abnormal returns. In the context of
CAPM we expect α1 to be zero.

Parameter estimates for each of the 11 sectors are presented in
Table 5. These estimates are based on the common practice of using
monthly data for the entire sample period, for our analysis, Oct. 1986
to Oct. 2016. Hlth and Shops are the only sectors with intercepts that

Fig. 3. These figures contain the wavelet power spectra for monthly returns of the total Market and each of the 11 Sectors for October 1986-October 2016.
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are statistically significant at the 95% level of confidence. The estimates
of beta are all statistically significant at the 95% confidence level, and
range from a low of 0.402 for Utils to a high of 1.363 for BusEq.

Variability in beta estimates over time is illustrated in Table 6 that
contains summary statistics of estimated betas based on a 60-month
rolling window. The variation in beta for a given sector, as measured by
the maximum estimate less the minimum, ranges from a low of -0.006
for Utils and 0.275 for NoDur, to a high of 2.003 for BusEq.

Time plots of the rolling window beta estimates are presented below

in Fig. 7. Several sectors, such as Shops and Manuf exhibit long
stretches of stability. Other sectors such as Nodur and Hlth, vary widely
over the sample period and follow a similar pattern in which the betas
decrease until early 2005, and increase thereafter. Finally, the beta
measure for Telcm jumps after the tech bubble bust in 2000 and
continues to increase steadily until 2005, while beta for Money jumps
in 2008 and remains high.

The fluctuations in the standard regression based estimates of
beta are consistent with the changes and large breaks in coherence

Fig. 4. Wavelet coherence and Phase Differences for Market returns with each sector. Note the inverted scale. Co-movement, of the market returns with the sector returns is lowest
where the figure is blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

B.D. McNevin, J. Nix Economic Modelling 68 (2018) 570–585

578



shown in the time/frequency plots of the continuous wavelet
coherence (Fig. 5), that shows large breaks in coherence across
time, even at low frequencies. So far, our analysis finds both large
fluctuations in standard beta and large breaks in coherence over
time. We next proceed to estimate scale betas for the sectors and
investigate how the well-known strength of the wavelet in capturing
time-varying behavior at different frequencies affects estimates of
market risk.

4.7. Scale beta

The consumption capital asset pricing model has been used as the
theoretical foundation in previous empirical studies that allows for changes
in systematic risk over time. The consumption capital asset pricing model
has been employed by Gencay, et al. (2001, 2003) to derive an estimate of
systematic beta using wavelet methods. We assume that investors satisfy all
their future consumption needs from security returns. This implies that

Fig. 5. Wavelet coherence and Phase Differences for Market returns with each sector. Note the inverted scale. Co-movement, of the market returns with the sector returns is lowest
where the figure is blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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there are no non-investment sources of income and that the market
portfolio is a proxy for total consumption.

The discrete wavelet transform is a useful tool for estimating the
CAPM beta at different scales. We use a variation of the discrete

wavelet transform known as the maximal overlap discrete wavelet
transform, or MODWT to decompose each time series of returns into 6
scale series. The scale level is justified by the presence in the market of
agents with strategies that differ by time scale. Explanations include

Fig. 6. Spectral analysis coherence of market returns with returns of each sector.
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the assumption found in Gencay et al. (2003), that investors make their
consumption/savings decisions at different times. We simply need for
each time-scale the presence of investors with an interest in the market
risk exposure they face for that time scale. Reasons may include
differences in liquidity needs, shocks to wealth, and financial advice.
We decompose the variance of the returns into a set of scale level
variances by calculating the variance of the wavelet coefficients. The
wavelet variance at scale j is the variance of the wavelet coefficients at
that scale. Given a scale λ = 2i

j−1, an unbiased estimate of the wavelet
variance based on the MODWT is,

∑σ λ d( ) = [ ]∼
i N

t L

N

j t
2 1

= −1

−1

,
2

͠ j
j (10)

Where d∼j t, is the MODWT wavelet coefficient at scale λj,
L L= (2 − 1)( − 1)j

j is the length of the scale λj wavelet filter, and
N N L= − + 1͠ j j is the number of coefficients not effected by a bound-
ary, and N = 2J . Lj=length of the jth level wavelet filter.

Similarly the wavelet covariance at scale λj is:
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Following Gencay et al. (2003) we calculate scale level beta for
sector i as

β =ij
cov d d

σ λ

( , )

( )

∼ ∼
jt
m

jt
i

i j2 (12)

Where d∼jt
m
is the vector of detail coefficients for the market variable at

scale λj, and d∼jt
i
is the vector of detail coefficients for sector i.

Estimates of the scale betas using monthly sector returns are
presented in Table 5 (for ease of comparison with also provide
estimates of the standard betas). Asterisks (1, 2, or 3) next to a
parameter estimate indicates that the scale beta is significantly
different from the standard market beta at the 90%, 95%, or 99% level
of confidence. While none of the scale estimates differ statistically from
the standard beta measure at scale one (2-4 months) this is consistent
with our finding of low coherence of sectors with the market at high
frequencies. One interpretation of this finding is that at high frequen-
cies, changes are short-lived and diversifiable. When it comes to
sectors, short-term, transitory market movements do not produce scale
betas that are significantly different from standard betas. One implica-
tion is that the short-run disaggregation of information captured by
scale betas at the lowest scales is not of use to investors who care about
the customized market risk exposure associated with investments in
sectors. Although Shops has a scale two beta (4-8 months) that is
statistically different from the standard beta measure our speculation is
that the importance of discretionary income in this sector makes the
typical consumer sensitive to market changes even at low scales. For
example, unlike food, the consumer may postpone shopping trips to the
mall or repair work, and such actions where consumption delays are
possible may account for the sensitivity between sector returns and

Table 5
Market model estimates, monthly returns Oct.1986-Oct.2016.

Alpha SE(alpha) Beta SE(beta) Adj. R-Sq

NoDur 0.376 0.140 0.690 0.031 0.576
Durbl −0.221 0.227 1.238 0.051 0.623
Manuf 0.101 0.116 1.114 0.026 0.837
Enrgy 0.244 0.227 0.738 0.051 0.368
Chems 0.201 0.142 0.828 0.032 0.654
BusEq −0.077 0.192 1.363 0.043 0.736
Telcm 0.014 0.161 0.922 0.036 0.644
Utils 0.325 0.186 0.402 0.042 0.204
Shops 0.141 0.135 0.934 0.030 0.728
Hlth 0.339 0.167 0.756 0.374 0.531
Money −0.007 0.155 1.063 0.035 0.722

Table 6
Beta estimates, rolling 60 month window, Oct. 1986-Oct.2016.

NoDur Durbl Manuf Enrgy Chems Buseq

Mean 0.685 1.221 1.109 0.730 0.808 1.384
Std Dev 0.221 0.326 0.159 0.233 0.212 0.312
Min 0.275 0.761 0.873 0.415 0.358 1.004
Max 1.071 1.768 1.376 1.261 1.105 2.022

Telcm Utils Shops Hth Money

Mean 0.940 0.421 0.916 0.756 1.091
Std Dev 0.133 0.176 0.150 0.249 0.188
Min 0.641 −0.006 0.720 0.328 0.693
Max 1.350 0.719 1.256 1.242 1.391

Fig. 7. Rolling beta 60 month window - sectors.
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market returns at higher frequencies for this sector. However, addi-
tional research is needed to more precisely identify the factors that
account for either high or low beta sectors at a specific scale.

At medium and high scales a very different picture emerges, ten of
the eleven sectors have at least one scale beta that is significantly
different from standard measure of beta. Such differences are consis-
tent with the coherence plots. A significant difference between standard
regression estimates of beta and scale betas is consistent with the
explanation that frequency specific information that flows through a
sector at different speeds and intensities results in breaks in coherence
with the market over specific times and scales. For example, consider
Telecom, a sector with four scale betas of significance. The coherence
plot shows many more breaks or changes in color over medium or high

scale than compared with BusEq. The coherence plot for BusEq shows
a more solid color (red) over medium and high scales. We also find that
scale betas do not increase or decrease monotonically for any of the
sectors. There are also sectors such as Telecom that switch from low
beta sector using the standard estimate to high beta sector at high
scales, and a sector Manuf that is high beta based on standard beta
estimate and low using high scale beta estimates.

One interpretation of the results where we find different estimates
of market risk at the scale level but do not find any simple pattern
across scales such as less risk at high scales is rooted in the underlying
reality that the synchronization of sector returns and market returns
that will produce significantly different scale betas depends on unique
information that is captured at each horizon that affects the diversifica-

Table 7
Wavelet betas by sector, monthly returns, D(4) filter.

Scale NoDur Beta SE(beta) Adj. R-Sq diff stat. Telcm Beta SE(beta) Adj. R-Sq diff stat.

Returns 0.690 0.031 0.576 0.922 0.036 0.644
1 0.700 0.031 0.582 0.219 0.940 0.037 0.638 0.342
2 0.723 0.031 0.601 0.742 0.904 0.033 0.679 −0.384
3 0.690 0.029 0.605 −0.014 0.787 0.033 0.606 −2.739 ***
4 0.689 0.032 0.567 −0.032 0.798 0.037 0.567 −2.422 ***
5 0.529 0.035 0.381 −3.417 *** 1.155 0.041 0.692 4.283 ***
6 0.397 0.032 0.298 −6.563 *** 1.402 0.038 0.793 9.182 ***

Scale Durbl Beta SE(beta) Adj. R−Sq diff stat. Utils Beta SE(beta) Adj. R−Sq diff stat.
Returns 1.238 0.051 0.623 0.402 0.042 0.204
1 1.152 0.054 0.555 −1.154 0.367 0.044 0.157 −0.576
2 1.276 0.046 0.678 0.559 0.412 0.040 0.225 0.177
3 1.376 0.047 0.702 1.993 ** 0.335 0.038 0.178 −1.190
4 1.383 0.044 0.733 2.165 *** 0.566 0.040 0.359 2.854 ***
5 1.503 0.059 0.644 3.418 *** 0.603 0.043 0.348 3.341 ***
6 0.889 0.046 0.509 −5.092 *** 0.701 0.024 0.704 6.220 ***

Scale Manuf Beta SE(beta) Adj. R−Sq diff stat. Shops Beta SE(beta) Adj. R−Sq diff stat.
Returns 1.114 0.026 0.837 0.934 0.030 0.728
1 1.115 0.028 0.820 0.035 0.902 0.031 0.706 −0.739
2 1.120 0.023 0.863 0.171 1.006 0.029 0.764 1.719 *
3 1.159 0.024 0.862 1.269 1.026 0.030 0.763 2.172 **
4 1.171 0.025 0.859 1.568 0.875 0.029 0.713 −1.404
5 1.142 0.026 0.845 0.750 0.655 0.027 0.627 −6.930 ***
6 0.783 0.021 0.797 −9.977 *** 0.806 0.021 0.801 −3.475 ***

Scale Enrgy Beta SE(beta) Adj. R−Sq diff stat. Hlth Beta SE(beta) Adj. R−Sq diff stat.
Returns 0.738 0.051 0.368 0.756 0.037 0.531
1 0.766 0.054 0.357 0.372 0.770 0.040 0.505 0.254
2 0.688 0.050 0.343 −0.705 0.758 0.036 0.549 0.037
3 0.756 0.048 0.405 0.259 0.736 0.033 0.582 −0.410
4 0.853 0.040 0.559 1.781 * 0.718 0.031 0.598 −0.788
5 0.742 0.048 0.399 0.063 0.597 0.039 0.393 −2.943 ***
6 0.798 0.035 0.595 0.970 0.713 0.038 0.491 −0.807

Scale Chems Beta SE(beta) Adj. R−Sq diff stat. Money Beta SE(beta) Adj. R−Sq diff stat.
Returns 0.828 0.032 0.654 1.063 0.035 0.722
1 0.848 0.033 0.643 0.424 1.002 0.037 0.665 −1.186
2 0.837 0.031 0.675 0.195 1.120 0.030 0.797 1.259
3 0.835 0.029 0.699 0.148 1.104 0.031 0.779 0.880
4 0.842 0.033 0.647 0.292 1.143 0.033 0.769 1.674 *
5 0.739 0.032 0.590 −1.972 *** 1.088 0.041 0.657 0.466
6 0.497 0.027 0.491 −7.998 *** 0.979 0.035 0.690 −1.703 *

Scale BusEq Beta SE(beta) Adj. R−Sq diff stat.
Returns 1.363 0.043 0.736
1 1.400 0.047 0.715 0.584
2 1.319 0.039 0.761 −0.767
3 1.383 0.037 0.794 0.353
4 1.277 0.040 0.742 −1.470
5 1.323 0.049 0.666 −0.620
6 1.265 0.045 0.687 −1.580
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tion of sector risk. It would be implausible to find that every piece of
unique information associated with each scale has effects on the
diversification of market risk at the sector level, and therefore, not
every scale beta is significantly different from standard. We also find
that when comparing scale betas of significance there is not a
monotonic relationship such as less market risk or greater market risk
as the scale increases. In the Business Equipment sector there are no
scales with significantly different estimates of market betas compared
to the standard model estimate. This finding is consistent with the high
coherence with the market over time and scale as illustrated in the
coherence plot and reflected in the high beta of this sector both by
standard estimates and over the six estimated scales. Again, pointing to
the importance of differences in coherence across frequency that we do
not see in the BusEq sector as an explanation for when horizon effects
matter and produce scale betas that are significantly different from the
standard estimate. Table 7.

4.8. Scale betas over time

To illustrate the importance of scale for estimates of beta, we use a
rolling 60-month window over the sample period. Table A1 in the
Appendix provides summary statistics of scale betas based on a rolling
60-month window for all eleven sectors. Fig. 8 shows the 60-month
rolling window scale betas and the rolling window of the standard beta

for four sectors that were found to have significantly different scale 3
and scale 4 betas. Fig. 8 illustrates that the scale betas may remain
substantially above or below the standard beta for several years. This
variability illustrates that adjusting for time variability through rolling
window estimates without capturing time-varying behavior at different
frequencies may lead to estimates of beta that do not accurately capture
market risk dynamics. For example, consider a sector rotation strategy
that is a popular strategy among active portfolio managers. This
strategy typically recommends that investors overweight low beta
sectors such as the Utilities and Telecommunications during a reces-
sion. Since proper identification of low beta sectors is crucial for
deciding when to shift toward a more defensive stance the success of
this strategy depends critically on having an accurate measure of beta.

5. Conclusions

Our exploration of the market risk of sectors finds that low scale
betas are not significantly different from standard estimates. This is
compatible with the interpretation that some information washes out
in the range of frequencies associated with lowest scale and therefore,
does not matter for estimates of market beta. It appears that the
underlying economic relationships associated with estimates of market
risk are not significantly changed at high frequency. Further research is
needed to determine whether behavioral biases are operating at the

Fig. 8. Rolling Beta, 60 Day Window for Sectors by Scale: Comparison of standard beta with Scale 3 and Scale 4 betas over the sample period.
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lowest scales that produce transitory effects that evaporate when cooler
heads prevail. A different story emerges for market moves that play out
over medium and high scales. Differences in coherence across frequen-
cies at medium and high scales matter for estimates of market risk for
sectors. Our results show that when assessing the market risk of sectors
simple patterns of increasing or decreasing systematic risk are not
present. Comparing estimated standard beta coefficients of sectors with
scale betas that were found to be significantly different our results find
there are three sectors, Nodur, Manuf, and Hlth that have lower scale
betas at medium and high scales than the standard estimates, and a
sector, Utils with a higher scale betas compared to standard estimate.

Our main conclusion is that the importance of frequency specific
information does not remain stable over time and therefore, a complete
description of the systematic risk of investments in sectors requires

estimates that capture time-varying behavior at different frequencies.
Theoretical support for the existence of different types of market
participants found in a wide body of research provides support for
the application of a methodology that captures multi-period horizons.
Allowing diversity into the investor universe does not always imply that
horizon effects matter. While horizon effects are not found for any of
the sectors at the lowest scales, horizon based effects are found for most
sectors at medium and high scales. Investors with customized market
exposure associated with sector focused investments who may not
know a priori the time scale of their investments or those who know for
sure that they are it for the long haul, will benefit from capturing the
market risk of sector investments by broadening the definition of the
beta heuristic to allow for scale effects.

Appendix

A1 A2.

Table A1
60 Month Rolling Window Betas by Sector and Scale.

NoDur Durbl Manuf Enrgy Chems Buseq

Mean 0.685 1.221 1.109 0.730 0.808 1.384
Std Dev 0.221 0.325 0.158 0.232 0.212 0.312
Skewness 0.071 0.421 0.423 0.690 −0.676 0.690
Kurtosis −0.787 −1.394 −1.306 −0.541 −0.862 −1.004
Minimum 0.275 0.761 0.873 0.415 0.358 1.004
Maximum 1.071 1.768 1.376 1.261 1.105 2.022

Tecm Utils Shops Hth Money

Mean 0.940 0.421 0.916 0.756 1.091
Std Dev 0.133 0.176 0.150 0.249 0.188
Skewness 0.903 −0.752 1.058 0.427 −0.521
Kurtosis 0.522 −0.316 −0.165 −1.044 −1.070
Minimum 0.641 −0.006 0.720 0.328 0.693
Maximum 1.350 0.719 1.256 1.242 1.391

Table A2
Wavelet betas by sector, monthly returns, LA(8) filter.

Scale NoDur Beta SE(beta) Adj. R−Sq diff stat. Telcm Beta SE(beta) Adj. R−Sq diff stat.

Returns 0.69 0.0312 0.5758 0.92 0.0361 0.6443
1 0.7 0.031 0.5837 0.157 0.95 0.0375 0.6391 0.474
2 0.73 0.0316 0.6007 1.009 0.9 0.0325 0.6819 −0.388
3 0.67 0.0285 0.6082 −0.380 0.77 0.0328 0.605 −3.097 ***
4 0.7 0.0316 0.5753 0.211 0.77 0.0362 0.5545 −3.047 ***
5 0.51 0.0368 0.3495 −3.679 *** 1.17 0.0419 0.6834 4.444 ***
6 0.4 0.0313 0.313 −6.506 *** 1.43 0.0352 0.8203 10.001 ***

Scale Durbl Beta SE(beta) Adj. R−Sq diff stat. Utils Beta SE(beta) Adj. R−Sq diff stat.
Returns 1.24 0.0507 0.623 0.4 0.0417 0.2036
1 1.15 0.0549 0.5477 −1.193 0.36 0.0447 0.1516 −0.668
2 1.26 0.0449 0.6869 0.364 0.43 0.04 0.2409 0.468
3 1.42 0.0477 0.71 2.569 ** 0.31 0.0366 0.1611 −1.716 *
4 1.35 0.0418 0.7439 1.722 * 0.58 0.0397 0.3699 3.070 ***
5 1.59 0.0612 0.6511 4.397 *** 0.61 0.045 0.3372 3.407 ***
6 0.84 0.0433 0.5124 −5.920 *** 0.74 0.0214 0.77 7.257 ***

Scale Manuf Beta SE(beta) Adj. R−Sq diff stat. Shops Beta SE(beta) Adj. R−Sq diff stat.
Returns 1.11 0.0259 0.8371 0.93 0.0301 0.7278
1 1.12 0.0278 0.8175 0.065 0.9 0.0306 0.7058 −0.828
2 1.11 0.023 0.867 −0.033 1.01 0.0296 0.7629 1.763 *

(continued on next page)
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Table A2 (continued)

Scale NoDur Beta SE(beta) Adj. R−Sq diff stat. Telcm Beta SE(beta) Adj. R−Sq diff stat.

3 1.17 0.0246 0.8636 1.647 * 1.04 0.0302 0.7681 2.540 **
4 1.16 0.0248 0.8587 1.290 0.88 0.0286 0.7229 −1.392
5 1.18 0.0261 0.8496 1.774 * 0.6 0.0261 0.5907 −8.498 ***
6 0.77 0.0196 0.8106 −10.625 *** 0.82 0.0206 0.8135 −3.262 ***

run

Scale Enrgy Beta SE(beta) Adj. R−Sq diff stat. Hlth Beta SE(beta) Adj. R−Sq diff stat.
Returns 0.74 0.0508 0.3684 0.76 0.0374 0.5308
1 0.77 0.0538 0.3593 0.387 0.77 0.0402 0.502 0.185
2 0.69 0.0506 0.3366 −0.735 0.77 0.0366 0.5493 0.216
3 0.76 0.0484 0.4046 0.287 0.73 0.0322 0.5843 −0.615
4 0.85 0.0374 0.5867 1.711 * 0.74 0.0293 0.6364 −0.419
5 0.75 0.0498 0.3835 0.119 0.57 0.0401 0.3581 −3.410 ***
6 0.85 0.032 0.6619 1.858 * 0.71 0.0372 0.4994 −0.938

Scale Chems Beta SE(beta) Adj. R−Sq diff stat. Money Beta SE(beta) Adj. R−Sq diff stat.
Returns 0.83 0.0318 0.6535 1.06 0.0347 0.7224
1 0.84 0.0334 0.6403 0.356 0.99 0.0377 0.6589 −1.338
2 0.84 0.0308 0.6741 0.303 1.13 0.0294 0.8025 1.402
3 0.84 0.028 0.7128 0.214 1.11 0.0304 0.7877 1.085
4 0.84 0.0327 0.6488 0.340 1.15 0.0325 0.7752 1.741 *
5 0.74 0.0334 0.5765 −1.928 ** 1.09 0.0443 0.6264 0.484
6 0.5 0.0261 0.5007 −8.099 *** 0.98 0.0319 0.7236 −1.780 *

Scale BusEq Beta SE(beta) Adj. R−Sq diff stat.
Returns 1.36 0.043 0.7365
1 1.41 0.0468 0.7153 0.706
2 1.3 0.0388 0.7585 −1.007
3 1.39 0.0362 0.8037 0.465
4 1.28 0.0387 0.7506 −1.519
5 1.34 0.0524 0.6444 −0.354
6 1.2 0.0422 0.691 −2.722 ***
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